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DIFUZIJA IZAZVANA STOHASTICKIM VALOM U HOMOGENOM
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Fickian diffusion caused by velocity fluctuations that
can. be described as a stochastic wave is examined. It is
demonstrated, if some asumptions on stochastic variables
of Eulerian velocity and particle displacement hold, that
only waves with phase velocity less than standard deviations
of velocity fluctuations can produce the Fickian diffusion.
The result is disscused on the examples of horizontal mixing
in the sea.

INTRODUCTION

The Landau similarity theory of turbulence assumes that in turbulent mixing
the velocity fluctuations on the scale of the dimension of the region where the
motion is observed play the fundamental role (Landau and Lif§ic, 1965,
p. 135). If L is characteristic length scale and U characteristic amplitude of
velocity fluctuations, than the turbulent diffusion coefficient K is K = UL
(Landau and LifS§ic, 1965. p. 234). This gives us the possibility to describe
the turbulent mixing with a simple chinematic model taking into account
only the main feature of velocity fluctuations. In this paper the velocity
fluctuations are described as a random simple waves. If some assumptions on
stochastic variable of Eulerian velocity and particles displacement hold, it is
demonstrated, that only waves with phase velocity less then standard deviation
of velocity fluctuations produce the Fickian diffusion. This is clear because the
fast waves will make the fluid particle to oscillate around its initial position
and there will be no mixing. If the phase velocity is negligible compared to
standard deviation of velocity fluctuations, the given relation for diffusion
coefficient is obtained. The result is disscused on the examples of horizontal
mixing in the sea.

DEFINITIONS
We will consider the Eulerian velocity field as stochastic process with

parameters (i t) where 3() is radius vector of space point and t time. Let it be

M)  uEb:Q-R,
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e (?(, t) denotes maping of sample set 2 in R3 state space of _J at given
space pont —}E and time t. Without defining physical meaning of 2 we
will assume that —1:; is stationary in space and time and ergodic. In this case
the distribution function of _1;, F, IE‘I_.I)(X, t)], is defined from the behaviour of

—
stochastic variable u in time or space.

The particle displacement ?O_E, t) from i and in time interval [o,t] can

be defined, once defined -1_1), as a solution of integral equation

—_

@ Y&y=1

£y

X +Y X, 0),¢ dC

If defined stochastic process ?(i t), from equation (2), assuming the
existence of integral, than it is the maping of the same sample set 2 as for

:l* in the state space R3. Let the distribution function of stochastic process

e —

X (—{(, t) be F [S—{) (i, t)]. Essentialy it is transition probability given X at t = o
y

to )—f + Y at t.

The Lagrangian velocity field we define as
- = B e
(3) v(iX,t)=u[X+ Y (X,t),t]

From equation (3) follows that sample set 2 of stochastic process 7(?(, t)
-
is the same as for stochastic ‘process_ﬁ (X, t).
—_ = - =
Let F, [v (X, t)] be the distribution function of v (X, t).

—
We see that sample set £ is the same for stochastic variables —1; ¥ and-;
and we can use the theorem of conditional probability.

For all distribution functions here considered we will suppose the existence
of probability density function. Applying the theorem of conditional proba-
bility from the previous definitions it follows that

- —> — —_ = = —_ =
@ LEvEdl=S £ [YXH f uE+YH]|Y(X)dY
Y b’ uly
—_ =
where dY = d¥; d¥Y,dY;, Y is the state space of stochastic variable Y (X, t),

. sy = =
f iy is probability density function of u given Y.
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— =
If we define stochastic process Y (X, t) homogeneous in space, i. e. indepen-

— - —
dent of X, from equation (4) follows that stochastic process v (X,t) is statio-
nary in time and space. In this case it is

- - D — _—
(5) f m&vyta—t) =5 £ (Y;ta—ty)f (w &ug | Y;tg—ty) dY
Y ug & uy|Y

— — — — —_ = - — = e —
where vi = v (X, t1), a=v (X, t2), wu =u (X,11,), wm=u (X + Y, t9),
& denotes »and«, and the parameters are denoted after;

-
If we define Y (t) as a process with independent increments from equation

— —
(2) than follows that u is stochasticaly independent of Y. In this case from
equation (3) we obtain relation between Lagrangian velocity correlation

=5,
function R;; (t) and Eulerian velocity correlation function ry; (Y, t)

®  Rym=S f [¥® rg¥ 1 dyY
Y Y

COSEQUENCES OF STOCHASTIC INDEPENDENCY OF EULERIAN
VELOCITY COMPONENTS

The components of the Eulerian velocity could be taken as stochastically
independent. In this case it will be

0 ry=o0 if i%j

From equations (6) and (7) follows that

From equations (2) and (7) follows

(9) Du = oV (’Y1 Y_]) =0 if i #: j

The transition probability density function is of a the form

(10) fy (Y) = 11 (Yy) f2 (Y2) f3 (Y3)

We can see that in the case of stochastic independency of the components
of the Eulerian velocity fluctuations the statistical description of the motion
can be done observing the motion along gliven axis independenthy of other
axes. This case will be considered here and the axis subscripts in the furter
text will be omitted.
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RANDOM SIMPLE WAVE AND FICKIAN DIFFUSION COEFICIENT

We assume that the spectral density of the Eulerian velocity fluctuations is

(11) f(0,9) =3[0 @—w)+8@t+w)] ()

wx

where § denotes Dirak’s delta function, w circular frequencies, + w characte-
ristic circular frequencies of the considered waves and » wave number. Accord-
ing to Bochner’s theorem (e.g. Welsh, 1970, p. 526) the covariance of Eulerian
velocity will be

— Piny
(12) r(y,t) =coswffe f (x)dx
o %

By inserting it into equation (6) for the covariance of

Lagrangian velocity after interchange the order of integration we obtain

(13) R (£) = cos w go D (e;0) £ (%) dwe

*

where @ (x; {) is the characteristic function of £, (y;1).
Assuming the existence of integrals

o]
(14 T=fR(¢)d
o}
where T is Lagrangian integral time scale, and
> o}
(15) S=J{R(()d
o

for t> T the displacement covariance according to Taylor’s equation which
could be obtained from equations (2), (3) and (14) asymptoticaly will be

(16) D (t) = 202 Tt
and the transition probality density will be Gaussian

an £ (Y;t) = (4nKt)—V2 exp (— Y¥4Kt)
Y

where the Fickian diffusion coefficient K is (e.g. Monin & Yaglom, 1977,
p. 608)

(18) K = U2T
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The characteristic function of the transition probability density function
is (eg. Zelen & Severa, 1968)

(19) @ (x;t) = exp (— Kn2t)

and from equations (13) and (14) the Lagrangian integral time scale is

(20) T=§ KY(K%4+0?) £ (x)dx,
o]

X

and from equation (18) and (20) eliminating T we obtain

m -_—
(21) U2 = (| KnY(K2%4i+w?) £ () dx
o0

X

From equation (21), providing that U, w and fx (x) are known, the diffu-
sion coefficient K is defined. Assuming that

(22) £ () =31[00c—x) + 8 (xtx)

V4

e e

i.e. by limiting the consideration to a simple wave of given frequency w and

wave number x and regarding as random its phases and amplitudes only we
obtain for the diffusion coefficient

(23) K= (U2—C)12/x, C=o/x

We can see that the diffusion coefficient will be real only for the phase
velocity C less than the standard deviation of velocity fluctuations U. The
result we can explain in this way: if the phase velocity is much greater than
the velocity fluctuations it will be approximatly u = v with very little diffe-
rence in time. In this case we have not diffusion in here considered case of
simple vawe because the Lagrangian time scale is not defined, and the parti-
cles will oscillate only arround its initial positions. In the case when the
phase velocity is negligible we obtain

) K =U/x

This result is known from similarity theory of turbulence (Landau &
Lif§ic, 1965, p. 234).

EXAMPLES OF HORIZONTAL MIXING IN THE SEA

The previous result we shall try to illustrate by few examples of hori-
zontal mixing in the sea.
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a) Tidal wave

The fig. 1 shows the time power spectrum of current field in the Vir sea
(Zore-Armanda, Bone & Gacié, 1978). It can be observed that for
the circular frequency of 2 cicle/day, corresponding to M2 component of tidal
wave, spectrum shows strong maximum. This frequency could be taken as
characteristic frequency of the tidal wave generating diffusion. The order of

200 48 24 12 { hours)
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Fig. 1. Spectral density function for the station
in the Vir region for three levels in

August 1975 (---- anticlockwise part;
——— clockwise part).

magnitude of U is 10—2 m/s and K will be real only for the wave number
greater than 10—3 m—1, But this order of magnitude of the wave number does
not correspond to the appropriate space scale of the tidal wave and we can
conclude that tidal vawe is fast in comparasion to particles velocity and does
not generate Fickian diffusion. The same conclusion we can draw for all
motion which can be described with a solution of linearised hydrodynamical
equation. It is because, in the basis of linearisation of hydrodynamical equa-
tions, there is the assumption that phase velocity is much greater than particle

velocity (e.s. Bomne, 1977). Only the statistics on advection terms produced
the diffusion processes.
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b) Ocean residual current

For the ocean residual current K/U is of the order of magnitude 10° m

(Proudman, 1952) which corresponds (from equation 24) to % of the order
of magnitude of 10—% m—1, i.e. to the space scale of 103 Km. The order of

magnitude of U is 10— m/s and this must be greater than «/x, i.e. the period
of flucuations must be greater than 70 days. In this case we cauld try to
describe the ocean diffusion with a wave which have the space dimension of
102 km and seasonal period of fluctuations.

¢) Residual current in the bay

For the example we take the KaS$tela bay. The space scale of the bay is
104 m. The diffusion coefficient in the residual current is determined from the
field of suspended particles (Gaéié¢, 1976). The order of magnitude of diffu-
sion coeff1c1ent is 10 m?%s. The standard deviation of velocity fluctuatlons in

the residual current is of the order of magmtude 10—2 m/s. In this case  is

of order of magnitude 10~3 m—! and ® could have tidal or less frequencies.
We could try to describe the diffusion by the wave motion induced by tide
having the dimension of the bay and tidal frequencies.
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KRATKI SADRZAJ

Fikova difuzija promatrana je kao rezultat fluktuacija brzina u homoge-
nom i stacionarnom strujnom polju koje se mogu opisati kao stohasti¢ki val
date frekvence dok su njegove amplitude i valni brojevi slu¢ajne velié¢ine.
Rezultat je vrlo jednostavna relacija izmedu koeficijenta Fikove difuzije K,
standardne devijacije fluktuacija brzina U i karakteristiénog valnog broja
fluktuacija na promatranoj prostornoj skali L: K = U/L. Ovaj rezultat poznat
je iz Kolmogorove teorije turbulencije s tim S$to je ‘pokazano da je Fikova
difuzija u ovdje promatranom slu¢aju moguca samo ako su fazne brzine
promatranog stohasti¢kog vala male prema standardnoj devijaciji fluktuacija
brzina. U kratkoj diskusiji iznijeti su neki primjeri iz horizontalnog mjeSanja
u moru.



