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Ficki-a,n cliffusion caused ,by velocity fluctuations that 
can be described as a sto.chiastic wave is exami.ned. lt is 
demons,traited, if some ais:UJmlPtions on stochastic vairiables 
of Eulelian velodty and particie displacement hold, that 
on1y wa:ves with phase velocity less than standard deviations 
of velocilty fl:uctuaitions can produce· the Fickian diffusion. 
The reS1Ult is dissc.u:sed on the examples of horizonta! mixing 
in the sea. 

INTRODUCTION 

The Landau similarity theory of turbulence assumes that in turbulent mixing 
the velocity fluctuations on the scale of the dimension of the region where the 
motion is observed play the fundamental role (L a n d a u and L i f š i c, 1965, 
p. 135). If L is characteristic length scale and U characteristic amplitude of 
velocity fluctuations, than the turbulent diffusion ooefficient K is K = UL 
(Lan d a u and Li f š i c, 1965. p. 234). This gives us the possibility to dese.ribe 
the turbulent mixing with a simple chinematic model taking into account 
only the main f~alture of velocity fludtu,ations. In this ,paper the veloailty 
fluctuaitians are desC'I'ibed as a random S!ilmple w,cwes. If some assumpilions on 
stochastiic Vlarti.ahle of Eulerian velocity and partioles d'isplacernent hio1d, d!t is 
demonstrated, ;that only waves with phase veloaity less :then s1Jaindalf'd dev.iatlion 
of velocity fluctuiait!ibns pr:oduce thre Fickian diffusiJon. Thls is clear because lth€ 
fast waves will make the fluid particle to oscillate around its initial position 
and there will be no mixing. If the rphase velocity is negligible compared to 
standard deviation of velocity fluctuations, the given relation far diffusion 
coefficient is obtained. The result is disscused on the examples of horizonta! 
mixing in the sea. 

DEFlNITIONS 

We will consider the Eulerian velocity field as stochastic process with 
-+ -+ 

parameters (X, t) where X is radius vector of space point and t time. Let it be 
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-+ -+ -+ 
u (X, t) denotes maping of sample set Q in R3 state space of u at given 

-+ 
space pont X and time t. Without defining physical meaning of Q we 

-+ 
will assume that u is stationary in space and time and ergodic. ln this case 

-+ -+ 
the distdbution function of u, F u [u (X, t)], is defined from the behaviour of 

-+ 
stochastic variable u im time or space. 

-+ -+ -+ 
The particle displacement Y (X, t) from X and in time interval [o, t] can 

-+ . 
be defined, once defined u, as a solution of integral equatfon 

-Ji,- ---+ t---+ ~ ---+ ---+ 
(2) Y (X,t) = J 1u [X + Y (X, C), C] d( 

o 

-+ -+ 
lf defined stochastic process Y (X, t), from equati-on (2), assuming the 

existence of dntegraiJ., than it ii.s the maiping of the same s,amp1e set Q as for 
-+ 
u in tihe state space R3. Let the distribution function of stochastic process 
---+ -+- ---+ ---+ ~ 

Y (X, t) be F' [Y (X, t)]. Essentialy i,t is transiUon probability gtiJven X at t = o 
-+ -+ y 

to X+ Y at t. 

The Lagrangian velocity fie1d we define as 

-+ -+ -+ -+ -+ 
(3) v (X, t) = u [X + Y (X, t), .t] 

-+-+ 
From equation (3) follows that sample set Q of stochastic process v (X, t) 

-+ -+ 
is the same as for stochastic process u (X, t). 

-+ -+ -+ -+ 
Let F v [v (X, t)] be the distribution function of v (X, t). 

-+-+ -+ 
W e see that sample set Q is the same for stochastic variables u, Y and v 

and we can use the theorem of conditional probability. 

For all distri:bution functions here considered we will suppose the existence 
of proba:bility density function. Applying the theorem of conditional proba­
bility from the previous definitions it follows that 

-+ -+ 
(4) fv [v (X, t)] = J 

-+ ---+---+ ~ ---+---+-
f [Y (X, t)] f [u (X+Y, t) I Y (X, t)] dY 

y Y ulY 

-+ -+ 
where dY = dY1 dY2 dYa, Y is tihe state space of stochastic variable Y (X, t), 

-+ -+ 
f ulY is probability density functio111 of u given Y. 
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->--+ 
If we define stochastic µrocess Y (X, t) hamogeneous in s,paoe, i. e. iindepen-

-+ -+ -+ 
dent of X, from equation (4) follows that stochastic process v (X;t) is statio-
nary in time and space. In this case it is 

---+-+ -::r ----? -)--+ 

(5) f (v1 & V2; t2 - t1) = S f (Y; t2 - t1) f (u1 & u2 I Y; t2 - t1) dY 
Y u, &u,JY 

-+ ---+-+ -+ -+-+ -+ ---+~ -+·-+-+-+ 
where v1 = v (X, t1), v2 = v {X, t2), u1 = u (X, t1, ), u2 = u (X + Y, t2), 
& denotes »and«, and the parameters are denoted after; 

-+ 
If we define Y (t) as a process with independent increments from equation 

-► - >-
(2) than follows that u is stochasticaly independent of Y. In this case from 
equation (5) we obtain relation between Lagrangian veiocity correlation 

-+ 
function Rij (t) and Eulerian velocity correlation function ru (Y, t) 

-+ -+ 
(6) Ru (t) = S f [Y (t)] ru (Y, t) dY 

y y 

C0SEQUENCES 0F ST0CHASTIC lNDEPENDENCY 0F EULERIAN 
VEL0CITY COMP0NENTS 

The components of the Eulerian velocity could be taken as stochastically 
independent. In this case it will be 

(7) rij = o if i =l= j 

From equations (6) and (7) foUows that 

(8) Rij = o if i =l= j 

From equations (2) and (7) follows 

(9) Dii = cov (Yi Yi) = o if i =l= j 

The transition probability density function is of a the form 

(10) f (Y) = f1 (Y1) f2 (Y2) f3 (Y3) 
y 

W,e can see that in the case of stoch,astic independency of the compon:ents 
of the Eulerian velocity fluctuations the statistical description of the motion 
can be đone observing ,the motion along given axis indepenclenthy of oth er 
axes. Thiis case wlill be considered here and thE axis subsrTipts in the furter 
text w.iJl.l be omlitted. 
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RANDOM SIMPLE W A VE AND FICKIAN DIFFUSION COEFICIENT 

We assume that the spectral density of the Eulerian velocity fluctuations is 

(11) f (w, x) = ½ [b (w -w) + <> (w+w)] f (i,:) 

where b denotes Dirak's delta function, w circular frequencies, ± w characte­
ristic circular frequencies of the considered waves and " wave number. Accord­
ing to Bochner's theoiI1em (e.g. Welsh, 1970, p. 526) the covariance of Eulerti.1an 
velocity will be 

_ 00 ixY 
(12) r (y, C) = cos wC Se f (i,:) di,: 

00 " 

By inserting it into equation (6) for the covariance of 

Lagrangian ve1ocity after interchange the order of integration we obtain 

00 

(13) R (C) = cos wC S <P (i,:;C) f (x) di,: 
00 

" 
where <P (i,:; C) is the characteristic function of fy (y; t). 

Assuming the existence of integrals 

00 

(14~ T = f R (C) dl; 
o 

where T is Lagrangian integral time scale, and 

<Xl 

(15) S = S C R (C) dC 
o 

for t > T the displacement covariance according to Taylor's equation which 
could be obtained from equations (2), (3) and (14) asymptoticaly will be 

(16) D (t) = 2U2 Tt 

and the transition probality density will be Gaussian 

(17) f {Y; t) = (4nKt)-1/ 2 exp (- Y2/4'Kt) 
y 

where the Fii1akJian cliffus:ion coefficien't K is (e.g. Mo nin & Y a g 1 om, 1977, 
p. 608) 

(18) K = U2T 
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The characteristic; function of the transition probability density function 
is (.eg. Z e I e n & Se vera, 1968) 

(19) iP(x;t)=exp(-Kx2t) 

and from equations (13) and (14) the Lagrangian integral time scale is 

00 

(20) T = S K2/(K2x4 +w2) f (x) dx, 
X 

and trom equaUon (18) and (20) eliminating T we obtain 

00 

(21) u-2 = S Kx2/(K2x4 +~2) f (x) dx 
00 X 

From equation (21), providing that U, w and fx (x) are known, the diffu­
sion coefficient K is defined. Assuming that 

(22) f (x) = ½ [b (x - x) + b (x+x)] 
X 

i.e. by limiting the consideration to a simple wave of given frequency w and 
wave nurnber x and regarding as random its phases and amplitudes only we 
obtain for the diffusion coefficient 

We can see that the diffusion coefficient will be real only far the phase 
velocity C less than the standard deviation of velocity fluctuations U. The 
result we can explain in this way: if the phase velocity is much greater than 
the velocity fluctuations it will be appmximatly u = v with very little diffe­
rence in time. In this case we have not diffusion in here considered case of 
simple vawe because the Lagrangian time scale is not defined, and the parti­
cles will oscillate only arround its initial positions. In the case when the 
phase velocity is negligible we obtain 

(2) K = U/x 

This result is known from similarity theory of turbulence (Lan da u & 
L i f š i c, 1965, p. 234). 

EXAMPLES OF HORIZONTAL MIXING IN THE SEA 

The previous result we shall try to iUustrate by few examples of hori­
zonta! mixing in the sea. 
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a) Tidal wave 

The fig . 1 shows the time power spectrum of current field in the Vir sea 
(Zore - A r ma n da, Bone & Gači ć, 1978). It can be observed that for 
the circular frequency of 2 cicle/day, corresponding to M2 component of tidal 
wave, spectrum shows strong maximum. This frequency could be taken as 
characteristic frequency of the tidal wave generating diffusion. The order of 

2.00 48 24 12 I hou;s) 

3,n 

20 m 

\ 
\ 

O .0 1 .02 ,03 .04 .05 .05 .07 .06 I q,h) 

Fig. 1. Specrt,ml densit.y function for the station 
in the Virr region for three levels in 
Augrn;t 1975 (- - - - aruticlockwise part; 
--- clockwise pa,rt). 

magnitude of U is 10-2 m/s and K will be real only for the wave number 
greater than 10-3 m-1. But this order of magnitude of the wave number does 
not correspond to the a,ppropriate space scale of the tidal wave and we can 
conclude that tidal vawe is fast in comparasion to particles velocity and does 
not generate Fickian diffusion. The same conclusion we can draw for all 
motion which can be described with a solution of linearised hydrodynamical 
equation. It is because, in the basis of linearisation of hydrodynamical equa­
tions, there is the assumption that phase velocity is much greater than particle 
velocity (e.g. B one, 1977). Only the statistics on advection terms produced 
the diffusion processes. 
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b) Ocean residual current 

For the ocean residual current K/U is of the order of magnitude 105 m 
(P r b u d m a n, 1952) which corresponds (from equation 24) to x of the order 
of magnitude of 10-5 m-1, i.e. to the space scale of 103 Km. The order of 
magnitude of U is 10-1 m/s and this must be greater than -;;;lx~ i.e. the period 
of flucuations must be greater than 70 days. In this case we cauld try to 
describe the ocean diffusion with a wave which have the space dimension of 
103 km and seasonal period of fluctuations. 

c) Residual current in the bay 

For the example we take the Kaštela bay. The space scale of the bay is 
104 m. The diffusion coefficient in the residual current is determined from the 
field of suspended particles (G a č i ć, 1976). The order of magnitude of diffu­
sion coefficient is 10 m 2/s. The standard deviation of velocity fluctuations in 
the resid;ai current is of the order of magnitude 10-2 m/s. In this case ~ is 
of order of magnitude 10-3 m-1 and w" could have tidal or less frequencies. 
We could try to describe the diffusion by the wave motion induced by tide 
having the dimension of the bay and tidal frequencies. 
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KRATKI SADRŽAJ 

Fikova difuzija promatrana je kao rezultat fluktuacija brzina u homoge­
nom i stacionarnom .strujnom polju koje se .mogu op1sati kao stoha-stički val 
date f.rekvence dok ,su njegove amplitude i valni brojev,i slučajne veličine. 
Rezultat je vrlo jednostavna relacija između koeficijenta Fikove difuzije K, 
standardne devijacije fluktuacija brzina U !i karakterističnog valnog broja 
fluktuacija na promatranoj prostornoj skali L: K = U/L. Ovaj rezultat poznat 
je iz Kolmogorove teorije turbulencije s tim što je lpokazano da je Fikova 
difuzija u ovdje promatranom slučaju moguća samo ako su fa:me brzine 
promatranog stohastičk,og vala male prema standardnoj devijaciji fluktuacija 
brzina. U kratkoj diskusiji iznijeti su neki primjeri iz horizontalnog mješanja 
u moru. 


