# Biometry analysis of the Atlantic bonito, Sarda sarda (Bloch, 1793), in the Adriatic Sea

Marijana FRANIČEVIĆ, Gorenka SINOVČIĆ\*, Vanja ČIKEŠ KEČ and Barbara ZORICA

Institute of Oceanography and Fisheries, P.O. Box 500, 21 000 Split, Croatia \*Corresponding author, e-mail: sinovcic@izor.hr

This paper presents the biometry analysis of the Atlantic bonito, Sarda sarda (Bloch, 1793), population in the eastern mid Adriatic Sea for 1997-2000. A total of 665 specimens were analyzed. Fork length ranged 33.0-67.0 cm. Nine morphometric and seven meristic characters were assessed. Sexual dimorphism was noticed in two meristic and three morphometric characters. The relation between total length and fork length is presented. Relative growth was studied by comparing changes in morphological characters with growth in fork length. Length-weight relationship is presented as well.

Key words: Sarda sarda, biometry, length-weight relationship

## **INTRODUCTION**

Knowledge of biometric variations is necessary in descriptions of species. As a rule, specimens originating from different areas differ from one another in morphology. The Atlantic bonito, Sarda sarda (BLOCH, 1793), is a widely distributed epipelagic, neritic, schooling species that can adapt to gradual changes in the environment, but is susceptible to sudden ones (COLLETTE & NAUEN, 1983). Biogeographically, it belongs to the Atlantic-Mediterranean region (JARDAS, 1983) and is distributed along tropical and temperate coasts of the Atlantic Ocean (including the Gulf of Mexico), the Mediterranean, and the Black Sea (COLLETTE & CHAO, 1975; YOSHIDA, 1980). Biometric variation in S. sarda from different areas was described by COLLETTE & CHAO (1975) using a morphometric approach. PUJOLAR et al. (2001) and VIÑAS et al.

(2004) studied the patterns of differentiation in two sub-populations of Atlantic bonito inhabiting the Mediterranean. In the Adriatic, the species is distributed in bays and open waters, especially in the mid and southern parts. The present study aimed to determine the variation of meristic and morphometric characters of Atlantic bonito caught in the eastern mid Adriatic.

## MATERIAL AND METHODS

Twenty-one samples containing 665 specimens of *S. sarda* were collected from purse seine commercial catches in Croatian fishing grounds in the eastern mid Adriatic Sea from June 1997 to September 2000 (Fig. 1).

Body lengths were measured to the nearest millimeter and total weight to the nearest 0.01 g. Sex was determined macroscopically. Nine morphometric characteristics were examined (Fig. 2): total length (LT), fork length (LF), length from head to anal fin (LA), head length (LH), pelvic fin length (LP), eye diameter (ED), length of first dorsal fin base (LD1), length of second dorsal fin base (LD2), and maximum body depth (BD). Seven meristic characteristics were examined: number of spines in the first dorsal fin (D1), number of pectoral rays (P), number of dorsal finlets (NPD), number of anal finlets (NPV), number of gillrakers (Brsp), number of vertebrae (Vert), and number of teeth (Dent). The vertebrae were counted from the occipital condyle to the urostyle, inclusive. Meristic characteristics were considered absolute values while morphometric characteristics were relative to the fork or head length. The significance of differences between males and females was tested by t test.

Length-length relationships were determined by the method of least squares to examine morphometric changes occurring with increases of fork length. The relationship between the length and weight of the fish was estimated using the equation  $W = aLF^b$  (RICKER, 1975), where W is the weight of the fish, LF is the fork



Fig. 1. Sampling area of the Atlantic bonito, Sarda sarda, in the eastern mid Adriatic Sea

length, and *a* and *b* are constants. STUDENT's *t* test was applied to determine the significance of differences (95% level) between the isometric growth (b = 3) and the estimated *b* value of the equation.



Fig. 2. Meristic and morphometric characteristics of the Atlantic bonito, Sarda sarda

# RESULTS

## Length frequency distribution

Of the 665 specimens, 353 were females (53.08%), 285 were males (42.86%), and 27 (4.06%) were of undetermined sex. Fork lengths ranged 33.0-67.0 cm with a mean of 42.2±6.077 cm and mode of 38.0 cm (7.07%; Fig. 3). Fork length in males ranged 35.0-67.0 cm with a mean of  $43.2\pm6.269$  cm and mode of 40.0 cm. Fork length in females ranged 33.0-64.5 cm with a mean of  $41.8\pm5.889$  cm and mode of 38.0 cm (8.22%). There were no significant differences between sexes in overall mean fork length  $(t = 1.054; t_{crit} = 1.96).$ 

The ranges and mean fork lengths and t test results comparing males with females are presented for each year of the investigation (Table 1). The mean fork lengths did not significantly differ between sexes in 1997 but they did in 1998. The two dominant length groups were 38.5 cm (11.69%) and 39.0 cm (13.33%). Males were more abundant in the 38.5 cm length group and females in the 39.0 cm length group. During 1999, the mean fork length of males was significantly higher than that of females. Males had a mode of 40.0 cm (12.61%), females of

38.0 cm (9.35%), and the total sample 38.5 cm(8.12%). In 2000, male and female fork lengths did not significantly differ.

Table 1. Fork lengths (LF) and means (±SD) of Atlantic bonito males, females, and totals, by year

| Year | Sex   |     | LF        |                       | 4      |
|------|-------|-----|-----------|-----------------------|--------|
| rear | Sex   | n   |           | $\overline{x} \pm SD$ | t      |
|      |       |     | (cm)      | (%)                   |        |
| 1997 | 3     | 42  | 35.0-50.0 | 42.54±5.705           | 0.512  |
|      | 9     | 42  | 35.5-50.5 | $43.12 \pm 5.625$     |        |
|      | total | 84  | 35.0-50.5 | $42.83 {\pm} 5.639$   |        |
|      |       |     |           |                       |        |
| 1998 | 3     | 77  | 35.0-56.0 | $42.08 \pm 6.661$     | 2.771* |
|      | 4     | 120 | 33.0-57.0 | $39.60{\pm}5.195$     |        |
|      | total | 210 | 33.0-57.0 | $40.28 \pm 5.846$     |        |
|      |       |     |           |                       |        |
| 1999 | 3     | 119 | 36.0-67.0 | $41.98 {\pm} 4.614$   | 5.093* |
|      | 9     | 139 | 34.5-54.0 | $40.67 \pm 3.300$     |        |
|      | total | 271 | 34.5-67.0 | $40.86 \pm 3.349$     |        |
|      |       |     |           |                       |        |
| 2000 | 3     | 47  | 38.5-63.5 | $48.79 \pm 6.892$     | 0.896  |
|      | 4     | 52  | 37.5-64.0 | 47.51±7.328           |        |
|      | total | 100 | 37.5-64.0 | $48.04{\pm}7.118$     |        |

\*statistically significant (t = 1.96; p = 0.05)



Fig. 3. Total lengths of Atlantic bonito, Sarda sarda, from the eastern mid Adriatic Sea

# **Morphometric characteristics**

Differences between the sexes were statistically significant in three morphometric relationships (Table 2): length of first dorsal fin base (LD1) and distance from head to anal fin (LA) in relation to fork length (LF) and eye diameter (ED) in relation to head length (LH). Length-length relationship coefficients were high ( $r^2$ >0.876) and significant (p<0.001; Table 3). All analyzed morphometric characteristics were entirely proportionate to fork lengths.

## **Meristic characteristics**

Data on meristic characteristics are presented in Table 4. Statistically significant differences between the sexes were found in the number of spines in the first dorsal fin (D1) and number

 Table 2. Morphometric characters of Atlantic bonito Sarda sarda from the eastern mid Adriatic Sea:
 a) by sex, b) as total

| )            |     |     |               |                                    |         |         |
|--------------|-----|-----|---------------|------------------------------------|---------|---------|
| Relationship | Sex | n   | Range (%)     | $\overline{x} \pm \text{S.D.}$ (%) | t       | V (%)   |
|              | 3   | 226 | 25.12 - 32.44 | $29.623 \pm 1.0064$                | 2.02(2* | 3.3905  |
| LD1/LF       | 4   | 300 | 26.49 - 33.05 | $29.889 \pm 1.0597$                | 2.9362* | 3.5453  |
| LD2/LF       | 3   | 226 | 8.49 - 12.50  | $10.344 \pm 0.7409$                | 0.3522  | 7.1624  |
| LD2/LF       | 4   | 300 | 8.70 - 14.03  | $10.367 \pm 0.7444$                | 0.3322  | 7.1808  |
|              | 3   | 226 | 11.50 - 14.22 | $12.653 \pm 0.6218$                | 0 1692  | 4.9139  |
| LP/LF        | 9   | 300 | 11.11 - 14.25 | $12.622 \pm 0.5871$                | 0.1683  | 4.6917  |
| LA/LF        | 3   | 274 | 60.40 - 73.02 | $64.215 \pm 1.6504$                | 2.1332* | 2.5701  |
| LA/LF        | 9   | 337 | 61.33 - 77.73 | $64.500 \pm 1.6325$                | 2.1332  | 2.5311  |
| LH/LF        | 3   | 274 | 21.79 - 27.94 | $24.568 \pm 0.8942$                | 1.8341  | 3.6396  |
| LII/LF       | 4   | 337 | 20.00 - 27.36 | $24.431 \pm 0.9471$                | 1.8341  | 3.8766  |
| BD/LF        | 3   | 226 | 18.54 - 24.69 | $21.273 \pm 1.2937$                | 0.3006  | 6.0814  |
| DD/LF        | 9   | 300 | 18.29 - 25.83 | $21.306 \pm 1.1809$                | 0.3000  | 5.5424  |
|              | 3   | 226 | 9.68 - 18.84  | $11.609 \pm 1.2166$                | 2 7210* | 10.8830 |
| ED/LH        | 4   | 300 | 9.68 - 17.89  | $11.910 \pm 1.2961$                | 2.7218* | 10.4795 |
| LF/LT        | 3   | 285 | 85.08 - 94.19 | $90.266 \pm 1.9552$                | 0.3539  | 2.1660  |
|              | 4   | 353 | 84.76 - 94.64 | $90.213 \pm 1.7839$                | 0.5559  | 1.9774  |

\*statistically significant (t=1.96; P=0.05)

b)

| Relationship | n   | Range (%)     | $\bar{x} \pm $ S.D. (%) | t       |
|--------------|-----|---------------|-------------------------|---------|
| LD1/LF       | 533 | 25.12 - 33.42 | $29.803 \pm 1.0687$     | 3.5860  |
| LD2/LF       | 533 | 8.49 - 14.03  | $10.356 \pm 0.7410$     | 7.1549  |
| LP/LF        | 533 | 11.11 - 14.25 | $12.608 \pm 0.6087$     | 4.8279  |
| LA/LF        | 638 | 60.40 - 77.73 | $64.380 \pm 1.6419$     | 2.5503  |
| LH/LF        | 638 | 20.00 - 27.94 | $24.471 \pm 0.9462$     | 3.8665  |
| BD/LF        | 553 | 18.48 - 25.83 | $21.281 \pm 1.2144$     | 5.7064  |
| ED/LH        | 553 | 9.68 - 17.89  | $11.814 \pm 1.2767$     | 10.8064 |
| LF/LT        | 665 | 84.76 - 94.65 | $90.295 \pm 1.8633$     | 2.0636  |
|              |     |               |                         |         |

| Sex                      | Equation*      | n                 | Constant<br>a              | Slope b                       | $r^2$                      |
|--------------------------|----------------|-------------------|----------------------------|-------------------------------|----------------------------|
| Males                    |                | 285               | 0.9127                     | -0.4938                       | 0.9867                     |
| Females                  | LF = a+bLT     | 535               | 0.9086                     | -0.3015                       | 0.9884                     |
| Both                     |                | 665               | 0.9081                     | -0.2625                       | 0.9878                     |
| Males                    |                | 226               | 0.2835                     | 0.5251                        | 0.9684                     |
| Females                  | LD1 =<br>a+bLF | 300               | 0.2880                     | 0.4414                        | 0.9644                     |
| Both                     | a + 0L1        | 553               | 0.2839                     | 0.5668                        | 0.9636                     |
| Males                    |                | 226               | 0.1038                     | -0.0255                       | 0.8762                     |
| Females                  | LD2 =<br>a+bLF | 300               | 0.1055                     | -0.0773                       | 0.8841                     |
| Both                     | u olli         | 553               | 0.1044                     | -0.0394                       | 0.8816                     |
| Males<br>Females<br>Both | LP = a+bLF     | 226<br>300<br>553 | 0.1528<br>0.1507<br>0.1522 | -1.1008<br>-0.9918<br>-1.0671 | 0.9702<br>0.9682<br>0.9697 |
| Males<br>Females<br>Both | LA = a+bLF     | 274<br>337<br>638 | 0.6262<br>0.6418<br>0.6324 | 0.6728<br>0.1289<br>0.4690    | 0.9848<br>0.9820<br>0.9834 |
| Males<br>Females<br>Both | LH = a+bLF     | 274<br>337<br>638 | 0.2221<br>0.2261<br>0.2269 | 0.9931<br>0.7434<br>0.7357    | 0.9697<br>0.9624<br>0.9649 |
| Males<br>Females<br>Both | BD = a+bLF     | 226<br>300<br>553 | 0.2493<br>0.2090<br>0.2215 | -1.4673<br>0.1647<br>-0.3449  | 0.9077<br>0.9208<br>0.9127 |

 

 Table 3. Estimated parameters of Atlantic bonito Sarda sarda for converting morphometric characteristics to fork length (LF)

\* Abbreviations as in Table 2

of finlets on the dorsal side (NPD), suggesting the existence of sexual dimorphism. Overall, the number of spines in the first dorsal fin of females was significantly higher than in males (t = 2.29, p < 0.05), while males had a greater number of finlets on the dorsal side than females (t = 3.43). Comparisons of data from this study with previously published data show that there were significant differences in the number of teeth on the upper and lower jaws (Table 5).

Table 4. Meristic characteristics of Atlantic bonito Sarda sarda from the eastern mid Adriatic Sea

| Character          | n   | Range       | $\overline{x} \pm SD$ (%) | V (%)      |
|--------------------|-----|-------------|---------------------------|------------|
| D1                 | 522 | 19-23       | 21.318±0.6026             | 2.8269     |
| Р                  | 485 | 23-26       | 24.038±0.7361             | 3.0622     |
| NPD                | 550 | 7-9         | 8.056±0.5214              | 6.4720     |
| NPV                | 550 | 6-8         | $6.8652 \pm 0.452$        | 6.5859     |
| Brsp               | 469 | 17-23       | $20.7079 \pm 0.9795$      | 4.7299     |
| Vert               | 53  | 53          | 53                        | -          |
| Dent (upper/lower) | 37  | 38-48/30-38 | 41.53±2.984/33.79±2.451   | 7.186/7.25 |
|                    |     |             |                           |            |

| Character | Sex | n   | Range | $\bar{x} \pm SD(\%)$ | t      | V (%)  |
|-----------|-----|-----|-------|----------------------|--------|--------|
| D1        | 3   | 215 | 19-23 | 21.251±0.6501        | 2.2866 | 3.0590 |
|           | 4   | 282 | 20-23 | 21.383±0.5679        | 2.2800 | 2.6560 |
|           |     |     |       |                      |        |        |
| Р         | 3   | 195 | 23-26 | 23.979±0.7389        | 1.1219 | 3.0814 |
|           | 9   | 264 | 23-26 | $24.064 \pm 0.7189$  | 1.1219 | 2.9872 |
|           |     |     |       |                      |        |        |
| NPD       | 3   | 225 | 7-9   | 8.151±0.5381         | 3.4302 | 6.6017 |
|           | 4   | 298 | 7-9   | $7.990{\pm}0.4888$   | 3.4302 | 6.1181 |
|           |     |     |       |                      |        |        |
| NPV       | 3   | 225 | 6-8   | $6.907 {\pm} 0.4484$ | 1.6207 | 6.4924 |
|           | Ŷ   | 297 | 6-8   | 6.835±0.4536         |        | 6.6371 |

Table 4. cont'd

D1 = number of spines in first dorsal fin, P = number of pectoral rays, NPD = number of dorsal finlets, NPV = number of anal finlets, Brsp = number of gillrakers, Vert = number of vertebrae, Dent = number of teeth

| Area                        | D1         | Р     | NPD | NPV | Vert  | Brsp  | Dent<br>(upper/lower) |
|-----------------------------|------------|-------|-----|-----|-------|-------|-----------------------|
| N. America*                 | XX-XXIII   | 23-26 | 7-9 | 6-8 | 50-53 | 16-22 | 17-22/12-19           |
| S. America*                 | XX-XXI     | 23-26 | 7-9 | 6-7 | 50-53 | 17-21 | 16-23/14-18           |
| N.E. Atlantic*              | XX-XXII    | 24-26 | 7-9 | 6-8 | 51    | 18-21 | 18-25/15-24           |
| Gulf of Guinea (S. Africa)* | XXI-XXII   | 23-25 | 7-9 | 6-7 | 52-55 | 18-23 | 17-24/13-19           |
| Mediterranean/Black Sea*    | XXI-XXIII  | 23-25 | 7-9 | 6-8 | 53-54 | 18-23 | 16-24/13-20           |
| Turkish waters**            | XVII-XXIII | 22-26 |     |     | 52-55 |       | 14-26/12-22           |
| Adriatic Sea***             | XIX-XXIII  | 23-26 | 7-9 | 6-8 | 53    | 17-23 | 38-48/30-38           |

Table 5. Meristic characteristics of Atlantic bonito Sarda sarda from various geographic regions

\* COLLETTE & CHAO, 1975; \*\* DEMIR, 1964; \*\*\* this paper Abbreviations as in Table 4

#### Length-weight relationship

The analyzed specimens weighed 498.68-4500.00 g. The length-weight relationship was calculated separately for each sex and all specimens (Table 6). Correlation coefficients (r>0.9) showed the high correlation between estimated and empiric data for male, female, and all specimens taken together. The growth in weight relative to fork length showed positive allometry: for males b = 3.34, for females b = 3.24, and for all specimens b = 3.12. The b values significantly differed from 3.0 for males, females, and all specimens (*t*-test): for males t = 6.8808, p>0.05, for females t = 5.5609, p>0.05, and for all t = 4.1245, p>0.05, and between sexes (t = 10.283; p<0.001), with greater differences among larger specimens. Our results somewhat differ from those of other authors in different regions.

| Author                       | Region                                    | n                               | Fork length (cm)                                              | а                                                  | b                                         | Sex                            |
|------------------------------|-------------------------------------------|---------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------|
| HANSEN,<br>1987              | S.W. Atlantic                             |                                 | 33.0-77.0                                                     | 0.0135                                             | 2.952                                     | Both                           |
| GIACCHETTA<br>et al., 1995   | Gulf of Taranto                           | 845<br>158                      |                                                               | 0.0252x10 <sup>-3</sup><br>0.0234x10 <sup>-3</sup> | 2.83<br>2.85                              | Both<br>Both                   |
| CORT <i>et al.</i> ,<br>1995 | Gulf of Taranto                           | 663<br>130<br>105<br>158<br>833 | 34.0-78.0<br>54.0-69.0<br>52.0-65.0<br>38.0-81.0<br>36.5-80.5 | 0.0351<br>0.0311<br>0.0574<br>0.0190<br>0.0071     | 2.755<br>2.789<br>2.633<br>2.909<br>3.151 | M<br>F<br>Both<br>Both<br>Both |
|                              | E. Aegean Sea                             | 287<br>111<br>134               | 32.8-70.6                                                     | 0.01640<br>0.01708<br>0.01672                      | 2.943<br>2.934<br>2.937                   | M<br>F<br>Both                 |
| REY et al.,<br>1984          | E. Atlantic<br>W. Mediterranean           | 242<br>229<br>878               | 33.0-65.2<br>33.2-70.5<br>19.0-71.5                           | 0.00653<br>0.00844<br>0.00724                      | 3.1865<br>3.1218<br>3.1644                | M<br>F<br>Both                 |
| FARUK<br>KARA, 1979          | Black Sea<br>Aegean Sea<br>Sea of Marmara | 1608                            | 14.0-90.0                                                     | 0.02361                                            | 2.8703                                    | Both                           |
| RODRIGUEZ-<br>RODA, 1966     | W. Mediterranean                          | 263                             | 36.0-67.5                                                     | 1.4861x10 <sup>-5</sup>                            | 2.9719                                    | Both                           |
| MORATO,<br>2001              | N.E. Atlantic                             | 31                              | 22.0-83.5                                                     | 0.0176                                             | 2.877                                     | Both                           |
| Our results                  | E. Adriatic                               | 285<br>353<br>665               | 35.0-67.0<br>33.0-64.5<br>33.0-67.0                           | 0.0038<br>0.0056<br>0.0085                         | 3.3414<br>3.2364<br>3.1230                | M<br>F<br>Both                 |

 Table 6. Comparison of relationships between fork length (LF) and weight (W) of Atlantic bonito from various regions of

 the Atlantic and Mediterranean where  $W = aLF^b$ 

# **DISCUSSION**

Data presented in this paper indicate that Atlantic bonito have diverged in morphology. Differences in length frequency distribution by sex and sampling year could be related to the procedures for sampling from commercial catches, sample size, and studied length range. All former fishery surveys of this species focused on fork lengths of commercial specimens, except HANSEN (1988) who studied morphometric characteristics in relation to total length. The juvenile phase is mainly missing from the samples.

This study demonstrates the existence of meristic and morphometric variations between

sexes in Atlantic bonito. The number of spines in the first dorsal fin of females was significantly higher than in males, while males had a greater number of finlets on the dorsal side. The length of the first dorsal fin base and distance of the anal fin from the head in relation to fork length were significantly higher in females than in males (t = 2.94 and t = 2.13, respectively). Females had a significantly higher eye diameter in relation to head length than males (t = 2.72). Examination of relationships of morphometric lengths and correlation coefficients showed that all morphometric relationships increased prorata with fork length.

Variation of morphometric and meristic characters in specimens from different geographical populations could be caused by differences in genetic structure or environmental conditions. The number of vertebrae is genetically fixed within narrow limits and minor aberrations are due to influences of environmental factors, especially temperature (GABRIEL, 1944; LINDSAY, 1954; BLAXTER, 1957; SINOVČIĆ, 1982). According to LARRAÑETA (1958), statistically significant differences in number of vertebrae represent independent populations. Few authors have described the meristic characters of Atlantic bonito (DEMIR 1964; COLLETTE & CHAO, 1975). The number of teeth is the only meristic character that significantly differed between this and other studies.

The growth in weight showed positive allometry in relation to fork length. There

is general agreement that differences in the length-weight parameter b could be a reflection of influences of the genotype or environmental or habitat factors, including the water thermal regime, salinity, food, sex, stage of maturity, disease, and season or time of capture (BAGENAL & TESCH, 1978; SHEPHERD & GRIMES, 1983; SAFRAN, 1992; JOBLING, 1997). The *b* values changed from year to year within the same region (CORT et al., 1995). According to BROWN (1957) and RICKER (1958), b values may range 1.4-4.0 or 2.5-4.0 (HILE, 1936; MARTIN, 1949). Comparing b values of lengthweight relationships from different regions showed that this value varies from negative to positive allometry. Positive allometry was observed in S. sarda from the east Atlantic, west Mediterranean, and east Adriatic.

The biometric results in this paper are preliminary and provide an insight into distinguishing among Atlantic bonito stocks that might be useful in fisheries management (LOWE *et al.*, 1998). These results should be verified in future genetic studies.

## ACKNOWLEDGEMENTS

This study was supported by the MINISTRY OF SCIENCE AND TECHNOLOGY OF THE REPUBLIC OF CROATIA and was part of the scientific project, Sustainable Exploitation Researches of the Adriatic Sea Resources.

## REFERENCES

- BAGENAL, T.B. & F.W. TESCH. 1978. Age and growth. In: T.B. Bagenal (Editor). Methods for Assessment of Fish Production in Fresh Waters. IBP Handbook, Vol. 3, Blackwell Sci.: London, pp. 101-136.
- BLAXTER, J.H.S. 1957. Herring rearing. III. The effect of temperature and other factors on myotome counts. Mar. Res., 1: 1-16.
- BROWN, M.E. 1957. The growth of brown trout (*Salmo trutta* Linn). II. The growth of twoyear-old trout at a constant temperature of 11.5°C. J. Exp. Biol., 22: 130-144.
- COLLETTE, B.B. & L.N. CHAO. 1975. Systematic and morphology of the bonitos (*Sarda*) and their relatives (Scombridae, Sardini). Fish. Bull. US, 73: 516-625.
- COLLETE, B.B. & C.E. NAUEN. 1983. FAO species catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish. Synop., 2 (125): 53-54.
- CORT, J.L., M. De LA SERNA, G. De METRIO, M. CACUCCI, L. SION, B. LIORZOU, L. ORSI-RELINI, E. CARAGITSOU, C. PAPACONSTANTINOU,

C. PLA, N. TSIMENIDES, G. TSERPES, C. YANNOPOULOS & P. MEGALOFONOU. 1995. Characterization of large pelagic stocks (*Thunnus thynnus* L., *Thunnus alalunga* Bonn, *Sarda sarda* Bloch, *Xiphias gladius* L.) in the Mediterranean. Final report. Commission of the Eur. Communities, 118 pp.

- DEMIR, M. 1964. Distribution of meristic counts of common bonito (*Sarda sarda* Bl.) from Turkish waters. Proc. Tech. Pap. Gen. Fish. Counc. Medit. FAO, 7: 455-457.
- FARUK KARA, O. 1979. Observations on growth and relationship between length and weight of *Sarda sarda* (Bloch). Inv. Pesq., 43 (1): 95-105.
- GABRIEL, M.L. 1944. Factors affecting the number and form of vertebrae in *Fundulus heteroclitus*. J. Exp. Zool., 95: 105-143.
- GIACCHETTA, F., N. SANTAMARIA, P. DE METRIO & G. DE METRIO. 1995. Biologia e pesca della palamita (*Sarda sarda*, Bloch) nel Golfo di Taranto. Biol. Mar. Mediterr., 2: 485-486.
- HANSEN, J.E. 1987. Aspectos biológicos y pesqueros del bonito Del Mar Argentino (Pisces, Scombridae, Sarda sarda) (Biological and fishery aspects of bonito from Argentinean Sea). ICCAT, Coll. Vol. Sci. Pap., 2: 441-442.
- HANSEN, J.E. 1988. Caracterización morfométrica y merística del bonito Argentino (Morphometric and meristic characteristics of Argentinean bonito). Rev. Invest. Des. Pesq., 8: 11-18.
- HILE, R. 1936. Age and growth of the cisco *Leucichthys artedi* (Le Sueur), in the lakes of the north-eastern highlands. Wisconsin Bull. US Bureau Fish., 48: 211-317.
- JARDAS, I. 1983. Analitički pregled ihtiofaune Jadranskog mora. (An analytical account of the Adriatic ichthyofauna). Ichthyologia, 15 (1):15-35.
- JOBLING, M. 1997. Temperature and growth: modulation of growth rate via temperature change. In: C.M. Wood, D.G. McDonald (Editors). Global warming: implications for freshwater and marine fish. Soc. Exp. Biol.,

Seminar series No. 61. Cambridge Univ. Press: Cambridge, pp. 225-253.

- LARRAÑETA, M.G. 1958. Sur la formule vertébrale de quelques poissons commerciaux des côtes de Castellón (On the vertebral formulae of fish species along the Castellón coast). Rapp P.-Réun. CIESMM, 14: 373-377.
- LINDSAY, C.C. 1954. Temperature controlled meristic variation in the paradise fish *Macropodus opercularis* (L.). Can. J. Zool., 30: 87-98.
- LOWE, S.A, VAN-DORNIK, D.M. & G.A. WINANS. 1998. Geographic variation in genetic and growth patterns of Atka mackerel, *Pleurogrammus monopterygius* (Hexagrammidae) in the Aleutian archipelago. Fish. Bull., 96: 502-515.
- MARTIN, W.R. 1949. The mechanics of environmental control of body form in fishes. Univ. Toronto, Stud. Biol., 58: 1-91.
- MORATO, T., AFONSO, P., LOURINHO, P., BARREIROS, J.P., R.S. SANTOS & R.D.M. NASH. 2001. Lengthweight relationship for 21 coastal fish species of the Azores, north-eastern Atlantic. Fish Res., 50 (3): 297-302.
- PUJOLAR, J.M., M.I. ROLDÁN & C. PLA. 2001. Allozyme differentiation of bonito in the Mediterranean Sea. J. Fish Biol., 59: 169-174.
- REY, J.C., E. ALOT & A. RAMOS. 1984. Sinopsis biológica del bonito, *Sarda sarda* (Bloch), del Mediterráneo y Atlántico Este (Biology Synopsis of bonito, *Sarda sarda* (Bloch) from Mediterranean and eastern Atlantic). ICCAT, Coll. Sci. Pap., 20 (2): 469-502.
- RICKER, W.E. 1958. Handbook of computations for biological statistic of fish populations. Bull. Fish. Res. Board Can., 199, 300 pp.
- RICKER, W.E. 1975. Computation and interpretation of biological statistic of fish populations. Bull. Fish. Res. Board Can., 191, 382 pp.
- RODRÍGUEZ-RODA, J. 1966. Estudio de la bacoreta, *Euthynnus alleteratus* (Raf.), bonito, *Sarda sarda* (Bloch) y melva, *Auxis thazard* (Lac.), capturados por las almadrabas Españolas (Studies of Bacoreta, *Euthynnus alleteratus* (Raf.), Bonito, *Sarda sarda* (Bloch) and Melva, *Auxis thazard* (Lac.) from Spanish traps catches). Invest. Pesq., 30: 247-292.

- SAFRAN, P. 1992. Theoretical analysis of the weight-length relationship in fish juveniles. Mar. Biol., 112: 545-551.
- SHEPHERD, G. & C.B. GRIMES. 1983. Geographic and historic variations in growth of weakfish, *Cynoscion regalis*, in the middle Atlantic Bight. Fish. Bull. US, 81: 803-813.
- SINOVČIĆ, G. 1982. On the vertebral number of anchovy, *Engraulis encrasicolus* (L.) in the central Adriatic. Acta Adriat., 22 (2): 441-448.
- VIÑAS, J., J.A. BREMER & C. PLA. 2004. Phylogeography of the Atlantic bonito (*Sarda sarda*) in the northern Mediterranean: the combined effect of historical variance, population expansion, secondary invasion, and isolation by distance. Mol. Phylogen. Evolut., 33: 32-42.
- YOSHIDA, H.O. 1980. Synopsis of biological data on bonitos of the genus *Sarda*. NOAA Tech.Rep. NMFS Circ. 432. FAO Fish. Synop., 118: 1-50.

Received: 02 June 2003 Accepted: 26 June 2005

# Analiza biometrijskih svojstava palamide, *Sarda sarda* (Bloch, 1793), u Jadranskom moru

Marijana FRANIČEVIĆ, Gorenka SINOVČIĆ\*, Vanja ČIKEŠ KEČ i Barbara ZORICA

Institut za oceanografiju i ribarstvo, P.P. 500, 21 000 Split, Hrvatska \*sinovcic@izor.hr

## SAŽETAK

U radu su analizirane biometrijske karakteristike palamide, *Sarda sarda* (Bloch, 1793), koja je prikupljena na području istočnog dijela srednjeg Jadranskog mora u razdoblju od 1997. do 2000. godine. Ukupno je obrađeno 665 primjerka ove ribe. Vilična dužina se kretala u rasponu između 33,0 i 67,0 cm. Analizirano je 9 morfometrijskih i 7 merističkih obilježja ove vrste. Utvrđeno je da je kod 3 morfometrijska i 2 meristička obilježja postojala značajna razlika između mužjaka i ženki. Zabilježene su promjene morfometrijskih odnosa s porastom vilične dužine (LF). Analizom dužinsko-masenog odnosa palamide je utvrđena pozitivna alometrija.

Ključne riječi: Sarda sarda, palamida, Jadransko more, biometrija, dužinsko-maseni odnos